Stable anchoring chemistry for room temperature charge transport through graphite-molecule contacts
نویسندگان
چکیده
An open challenge for single-molecule electronics is to find stable contacts at room temperature with a well-defined conductance. Common coinage metal electrodes pose fabrication and operational problems due to the high mobility of the surface atoms. We demonstrate how molecules covalently grafted onto mechanically robust graphite/graphene substrates overcome these limitations. To this aim, we explore the effect of the anchoring group chemistry on the charge transport properties of graphite-molecule contacts by means of the scanning tunneling microscopy break-junction technique and ab initio simulations. Molecules adsorbed on graphite only via van der Waals interactions have a conductance that decreases exponentially upon stretching the junctions, whereas the molecules bonded covalently to graphite have a single well-defined conductance and yield contacts of unprecedented stability at room temperature. Our results demonstrate a strong bias dependence of the single-molecule conductance, which varies over more than one order of magnitude even at low bias voltages, and show an opposite rectification behavior for covalent and noncovalent contacts. We demonstrate that this bias-dependent conductance and opposite rectification behavior is due to a novel effect caused by the nonconstant, highly dispersive density of states of graphite around the Fermi energy and that the direction of rectification is governed by the detailed nature of the molecule/graphite contact. Combined with the prospect of new functionalities due to a strongly bias-dependent conductance, these covalent contacts are ideal candidates for next-generation molecular electronic devices.
منابع مشابه
Electronic transport through dsDNA based junction: a Fibonacci model
A numerical study is presented to investigate the electronic transport properties through a synthetic DNA molecule based on a quasiperiodic arrangement of its constituent nucleotides. Using a generalized Green's function technique, the electronic conduction through the poly(GACT)-poly(CTGA) DNA molecule in a metal/DNA/metal model structure has been studied. Making use of a renormalization schem...
متن کاملElectrical Detection of Dna Binding Proteins
The base pair stack of double helical DNA has proven to be an effective medium for charge transport. The π-stacked DNA base pairs can mediate charge transport (CT) chemistry over distances as long as 20 nm, and the reaction is exquisitely sensitive to DNA sequence-dependent conformation and dynamics. This sensitivity to perturbations in DNA structure and base pair stacking makes DNA-mediated ch...
متن کاملEffect of Anchoring Groups on Single Molecule Charge Transport through Porphyrins
Controlling charge transport through individual molecules and further understanding the effect of anchoring groups on charge transport are central themes in moleculebased devices. However, in most anchoring effect studies, only two, or at most three nonthiol anchoring groups were studied and compared for a specific system, i.e., using the same core structure. The scarcity of direct comparison d...
متن کاملPromising anchoring groups for single-molecule conductance measurements.
The understanding of the charge transport through single molecule junctions is a prerequisite for the design and building of electronic circuits based on single molecule junctions. However, reliable and robust formation of such junctions is a challenging task to achieve. In this topical review, we present a systematic investigation of the anchoring group effect on single molecule junction condu...
متن کاملApplication of Charge Transfer Complexation Reaction for the Spectroscopy Determination of Anticonvulsant Drug Primidone
The interaction of the perimidone drug in solution state with the σ-acceptor iodine, the aliphatic π-acceptor tetracyanoethylene (TCNE) and the aromatic π-acceptor 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) have been studied through the initial formation of ionic intermediate to charge transfer (CT) complex in methanol at room temperature. The spectral studies of the complexes were determi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2017